Understanding GenAI Adoption in Education: A Systematic Literature Review
DOI:
https://doi.org/10.35671/jmtt.v4i2.139
Keywords:
Generative, Artificial intelligence, Technology adoption, UTAUT, EducationAbstract
This study conducts a systematic literature review of 40 peer-reviewed articles to investigate behavioral factors influencing the adoption of Generative Artificial Intelligence (GenAI) in education. Using PRISMA guidelines, the review identifies key constructs from the Unified Theory of Acceptance and Use of Technology (UTAUT) including performance expectancy, effort expectancy, social influence, and facilitating conditions as consistent predictors of GenAI usage. Additionally, complementary variables such as trust, perceived risk, self-efficacy, hedonic motivation, and ethical concerns are found to significantly shape user engagement. The integration of UTAUT with models like TAM, TPB, and SCT enhances explanatory depth, offering a multidimensional framework for understanding GenAI adoption. The study proposes a conceptual model and highlights the importance of inclusive, context-sensitive approaches to support responsible GenAI integration in academic settings.
Downloads
References
K. Lo, K. F. Hew, and M. S. Jong, “The influence of ChatGPT on student engagement: A systematic review and future research agenda,” Comput Educ, vol. 219, p. 105100, Oct. 2024, doi: 10.1016/j.compedu.2024.105100.
R. Deng, M. Jiang, X. Yu, Y. Lu, and S. Liu, “Does ChatGPT enhance student learning? A systematic review and meta-analysis of experimental studies,” Comput Educ, vol. 227, p. 105224, Apr. 2025, doi: 10.1016/j.compedu.2024.105224.
D. Kloos et al., “How can Generative AI Support Education?,” in 2024 IEEE Global Engineering Education Conference (EDUCON), IEEE, May 2024, pp. 1–7. doi: 10.1109/EDUCON60312.2024.10578716.
U. Mittal, S. Sai, V. Chamola, and D. Sangwan, “A Comprehensive Review on Generative AI for Education,” IEEE Access, vol. 12, pp. 142733–142759, 2024, doi: 10.1109/ACCESS.2024.3468368.
Wood and S. H. Moss, “Evaluating the impact of students’ generative AI use in educational contexts,” Journal of Research in Innovative Teaching & Learning, vol. 17, no. 2, pp. 152–167, Aug. 2024, doi: 10.1108/JRIT-06-2024-0151.
M. Astrid, A. Wahyuni, P. Anriani, H. Setiawan, and M. Bagas F, “IMPROVING STUDENT LEARNING THROUGH AI: A CASE STUDY ON DIGITAL LEARNING PLATFORMS,” Algebra : Jurnal Pendidikan, Sosial dan Sains, vol. 5, no. 2, pp. 205–212, Jun. 2025, doi: 10.58432/algebra.v5i2.1439.
K. Y. Chan and K. K. W. Lee, “The balancing act between AI and authenticity in assessment: A case study of secondary school students’ use of GenAI in reflective writing,” Comput Educ, vol. 238, p. 105399, Dec. 2025, doi: 10.1016/j.compedu.2025.105399.
N. I. KURNIAWATI, “Fenomena Maraknya Rasa Ketergantungan Peserta Didik Terhadap Kecerdasan Buatan,” JOIES (Journal of Islamic Education Studies), vol. 8, no. 2, pp. 158–177, Mar. 2024, doi: 10.15642/joies.2023.8.2.158-177.
L. Chen, P. Chen, and Z. Lin, “Artificial Intelligence in Education: A Review,” IEEE Access, vol. 8, pp. 75264–75278, 2020, doi: 10.1109/ACCESS.2020.2988510.
Mudjahidin, A. A. Hidayat, and A. P. Aristio, “Conceptual model of use behavior for peer-to-peer lending in Indonesia,” Procedia Comput Sci, vol. 197, pp. 215–222, 2022, doi: 10.1016/j.procs.2021.12.134.
H. Joshi, “Integrating trust and satisfaction into the UTAUT model to predict Chatbot adoption – A comparison between Gen-Z and Millennials,” International Journal of Information Management Data Insights, vol. 5, no. 1, p. 100332, Jun. 2025, doi: 10.1016/j.jjimei.2025.100332.
Y. Lai, K. Y. Cheung, C. S. Chan, and K. K. Law, “Integrating the adapted UTAUT model with moral obligation, trust and perceived risk to predict ChatGPT adoption for assessment support: A survey with students,” Computers and Education: Artificial Intelligence, vol. 6, p. 100246, Jun. 2024, doi: 10.1016/j.caeai.2024.100246.
W.-L. Hsu and A. D. K. Silalahi, “Exploring the paradoxical use of ChatGPT in education: Analyzing benefits, risks, and coping strategies through integrated UTAUT and PMT theories using a hybrid approach of SEM and fsQCA,” Computers and Education: Artificial Intelligence, vol. 7, p. 100329, Dec. 2024, doi: 10.1016/j.caeai.2024.100329.
Md. M. Rana, M. S. Siddiqee, Md. N. Sakib, and Md. R. Ahamed, “Assessing AI adoption in developing country academia: A trust and privacy-augmented UTAUT framework,” Heliyon, vol. 10, no. 18, p. e37569, Sep. 2024, doi: 10.1016/j.heliyon.2024.e37569.
M. Zaim et al., “AI-powered EFL pedagogy: Integrating generative AI into university teaching preparation through UTAUT and activity theory,” Computers and Education: Artificial Intelligence, vol. 7, p. 100335, Dec. 2024, doi: 10.1016/j.caeai.2024.100335.
A.K. Kleine, I. Schaffernak, and E. Lermer, “Exploring predictors of AI chatbot usage intensity among students: Within- and between-person relationships based on the technology acceptance model,” Computers in Human Behavior: Artificial Humans, vol. 3, p. 100113, Mar. 2025, doi: 10.1016/j.chbah.2024.100113.
H. M. Muhaimin, B. K. Danibao, Y. G. Wibowo, S. Wahyuni, and A. Octavia, “ChatGPT in higher education learning: Acceptance and use,” Computers and Education: Artificial Intelligence, vol. 5, p. 100190, 2023, doi: 10.1016/j.caeai.2023.100190.
R. R. Molefi, M. A. Ayanwale, L. Kurata, and J. Chere-Masopha, “Do in-service teachers accept artificial intelligence-driven technology? The mediating role of school support and resources,” Computers and Education Open, vol. 6, p. 100191, Jun. 2024, doi: 10.1016/j.caeo.2024.100191.
P. M. Cortez, A. K. S. Ong, J. F. T. Diaz, J. D. German, and S. J. S. Singh Jagdeep, “Analyzing Preceding factors affecting behavioral intention on communicational artificial intelligence as an educational tool,” Heliyon, vol. 10, no. 3, p. e25896, Feb. 2024, doi: 10.1016/j.heliyon.2024.e25896.
B. Y. S. Acquah, F. Arthur, I. Salifu, E. Quayson, and S. A. Nortey, “Preservice teachers’ behavioural intention to use artificial intelligence in lesson planning: A dual-staged PLS-SEM-ANN approach,” Computers and Education: Artificial Intelligence, vol. 7, p. 100307, Dec. 2024, doi: 10.1016/j.caeai.2024.100307.
Shuhaiber, M. A. Kuhail, and S. Salman, “ChatGPT in higher education - A Student’s perspective,” Computers in Human Behavior Reports, vol. 17, p. 100565, Mar. 2025, doi: 10.1016/j.chbr.2024.100565.
M. Panggabean and A. D. K. Silalahi, “How do ChatGPT’s benefit–risk-coping paradoxes impact higher education in Taiwan and Indonesia?,” Computers and Education: Artificial Intelligence, vol. 8, p. 100412, Jun. 2025, doi: 10.1016/j.caeai.2025.100412.
K. A. Mariñas, C. S. Saflor, P. Alvarado, J. M. Uminga, and N. A. Verde, “Assessing the importance of variables from a revised technology acceptance model for the use of ChatGPT by university students,” Computers and Education: Artificial Intelligence, vol. 9, p. 100435, Dec. 2025, doi: 10.1016/j.caeai.2025.100435.
M. A. Ayanwale and M. Ndlovu, “Investigating factors of students’ behavioral intentions to adopt chatbot technologies in higher education: Perspective from expanded diffusion theory of innovation,” Computers in Human Behavior Reports, vol. 14, p. 100396, May 2024, doi: 10.1016/j.chbr.2024.100396.
N. N. Valle et al., “Modeling learners’ behavioral intention toward using artificial intelligence in education,” Social Sciences & Humanities Open, vol. 10, p. 101167, 2024, doi: 10.1016/j.ssaho.2024.101167.
K. F. Garcia, A. K. S. Ong, Ma. J. J. Gumasing, and C. R. V. Delos Reyes, “Engineering students’ perceptions and actual use of AI-based math tools for solving mathematical problems,” Acta Psychol (Amst), vol. 256, p. 105004, Jun. 2025, doi: 10.1016/j.actpsy.2025.105004.
K. P. Letjani, K. Kurniawan, and S. Muthaiyah, “Adoption of chatgpt in educational institutions in Botswana: A customer perspective,” Asia Pacific Management Review, vol. 30, no. 1, p. 100346, Mar. 2025, doi: 10.1016/j.apmrv.2024.100346.
M. Elbaz, I. E. Salem, A. Darwish, N. A. Alkathiri, V. Mathew, and H. A. Al-Kaaf, “Getting to know ChatGPT: How business students feel, what they think about personal morality, and how their academic outcomes affect Oman’s higher education,” Computers and Education: Artificial Intelligence, vol. 7, p. 100324, Dec. 2024, doi: 10.1016/j.caeai.2024.100324.
S. Almogren, W. M. Al-Rahmi, and N. A. Dahri, “Exploring factors influencing the acceptance of ChatGPT in higher education: A smart education perspective,” Heliyon, vol. 10, no. 11, p. e31887, Jun. 2024, doi: 10.1016/j.heliyon.2024.e31887.
Agyare, J. Asare, A. Kraishan, I. Nkrumah, and D. K. Adjekum, “A cross-national assessment of artificial intelligence (AI) Chatbot user perceptions in collegiate physics education,” Computers and Education: Artificial Intelligence, vol. 8, p. 100365, Jun. 2025, doi: 10.1016/j.caeai.2025.100365.
Menon and K. Shilpa, “‘Chatting with ChatGPT’: Analyzing the factors influencing users’ intention to Use the Open AI’s ChatGPT using the UTAUT model,” Heliyon, vol. 9, no. 11, p. e20962, Nov. 2023, doi: 10.1016/j.heliyon.2023.e20962.
R. H. Mustofa, T. G. Kuncoro, D. Atmono, H. D. Hermawan, and Sukirman, “Extending the technology acceptance model: The role of subjective norms, ethics, and trust in AI tool adoption among students,” Computers and Education: Artificial Intelligence, vol. 8, p. 100379, Jun. 2025, doi: 10.1016/j.caeai.2025.100379.
Q. Wu, S. Li, S. Xin, Q. Hou, and P. Li, “A study on students’ behavioural intention and use behaviour of artificial intelligence-generated content in physical education: Employing an extended the unified theory of acceptance and use of technology model,” J Hosp Leis Sport Tour Educ, vol. 36, p. 100547, Jun. 2025, doi: 10.1016/j.jhlste.2025.100547.
M. Nurtanto et al., “Determinants of behavioral intentions and their impact on student performance in the use of AI technology in higher education in Indonesia: A SEM-PLS analysis based on TPB, UTAUT, and TAM frameworks,” Social Sciences & Humanities Open, vol. 11, p. 101638, 2025, doi: 10.1016/j.ssaho.2025.101638.
M. M. Ayyash and O. H. Salah, “AI adoption in higher education: Advancing sustainable energy management in palestinian universities,” Journal of Open Innovation: Technology, Market, and Complexity, vol. 11, no. 2, p. 100534, Jun. 2025, doi: 10.1016/j.joitmc.2025.100534.
M. Bouteraa et al., “Understanding the diffusion of AI-generative (ChatGPT) in higher education: Does students’ integrity matter?,” Computers in Human Behavior Reports, vol. 14, p. 100402, May 2024, doi: 10.1016/j.chbr.2024.100402.
S. Ivanov, M. Soliman, A. Tuomi, N. A. Alkathiri, and A. N. Al-Alawi, “Drivers of generative AI adoption in higher education through the lens of the Theory of Planned Behaviour,” Technol Soc, vol. 77, p. 102521, Jun. 2024, doi: 10.1016/j.techsoc.2024.102521.
Habibi, A. Mukminin, A. Octavia, S. Wahyuni, B. K. Danibao, and Y. G. Wibowo, “ChatGPT acceptance and use through UTAUT and TPB: A big survey in five Indonesian Universities,” Social Sciences & Humanities Open, vol. 10, p. 101136, 2024, doi: 10.1016/j.ssaho.2024.101136.
M. A. Camilleri, “Factors affecting performance expectancy and intentions to use ChatGPT: Using SmartPLS to advance an information technology acceptance framework,” Technol Forecast Soc Change, vol. 201, p. 123247, Apr. 2024, doi: 10.1016/j.techfore.2024.123247.
Tbaishat, G. Amoudi, and M. Elfadel, “Adapting teaching and learning with existing generative AI by higher education Students: Comparative study of Zayed University and King Abdulaziz University,” Computers and Education: Artificial Intelligence, vol. 8, p. 100421, Jun. 2025, doi: 10.1016/j.caeai.2025.100421.
C. Y. Lai, K. Y. Cheung, and C. S. Chan, “Exploring the role of intrinsic motivation in ChatGPT adoption to support active learning: An extension of the technology acceptance model,” Computers and Education: Artificial Intelligence, vol. 5, p. 100178, 2023, doi: 10.1016/j.caeai.2023.100178.
M. A. Ayanwale, S. D. Ntshangase, O. P. Adelana, K. W. Afolabi, U. A. Adam, and S. O. Olatunbosun, “Navigating the future: Exploring in-service teachers’ preparedness for artificial intelligence integration into South African schools,” Computers and Education: Artificial Intelligence, vol. 7, p. 100330, Dec. 2024, doi: 10.1016/j.caeai.2024.100330.
S. A. Bin-Nashwan, M. Sadallah, and M. Bouteraa, “Use of ChatGPT in academia: Academic integrity hangs in the balance,” Technol Soc, vol. 75, p. 102370, Nov. 2023, doi: 10.1016/j.techsoc.2023.102370.
R. Weinhandl et al., “The Why and How prospective mathematics teachers want to employ digital mathematics tools in classrooms,” Computers and Education Open, vol. 9, p. 100269, Dec. 2025, doi: 10.1016/j.caeo.2025.100269.
M. A. Almulla, “Investigating influencing factors of learning satisfaction in AI ChatGPT for research: University students perspective,” Heliyon, vol. 10, no. 11, p. e32220, Jun. 2024, doi: 10.1016/j.heliyon.2024.e32220.
X. Ma and Y. Huo, “Are users willing to embrace ChatGPT? Exploring the factors on the acceptance of chatbots from the perspective of AIDUA framework,” Technol Soc, vol. 75, p. 102362, Nov. 2023, doi: 10.1016/j.techsoc.2023.102362.
Schiavo, S. Businaro, and M. Zancanaro, “Comprehension, apprehension, and acceptance: Understanding the influence of literacy and anxiety on acceptance of artificial Intelligence,” Technol Soc, vol. 77, p. 102537, Jun. 2024, doi: 10.1016/j.techsoc.2024.102537.
R. K. Behera, Md. S. Islam, F. A. Abbasi, and A. Imtiaz, “Assessing the usage of ChatGPT on life satisfaction among higher education students: The moderating role of subjective health,” Technol Soc, vol. 78, p. 102655, Sep. 2024, doi: 10.1016/j.techsoc.2024.102655.
E. Kalisz, “Drivers of artificial intelligence integrated healthcare applications. Patients’ perspective,” Technol Forecast Soc Change, vol. 216, p. 124144, Jul. 2025, doi: 10.1016/j.techfore.2025.124144.
Y. Jin, R. Martinez-Maldonado, D. Gašević, and L. Yan, “GLAT: The generative AI literacy assessment test,” Computers and Education: Artificial Intelligence, vol. 9, p. 100436, Dec. 2025, doi: 10.1016/j.caeai.2025.100436.
S. H. Alshammari and E. Babu, “The mediating role of satisfaction in the relationship between perceived usefulness, perceived ease of use and students’ behavioural intention to use ChatGPT,” Sci Rep, vol. 15, no. 1, p. 7169, Feb. 2025, doi: 10.1038/s41598-025-91634-4.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Alifiansyah Arrizqy Hidayat, Tita Ayu Rospricilia, Nur Azizah Rosidah, Ramadhani Vanva Fauzia, Ian Mahendra Putra

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.






